The Prevalence and Phenotype of Activated Microglia/Macrophages within the Spinal Cord of the Hyperostotic Mouse (twy/twy) Changes in Response to Chronic Progressive Spinal Cord Compression: Implications for Human Cervical Compressive Myelopathy
نویسندگان
چکیده
BACKGROUND Cervical compressive myelopathy, e.g. due to spondylosis or ossification of the posterior longitudinal ligament is a common cause of spinal cord dysfunction. Although human pathological studies have reported neuronal loss and demyelination in the chronically compressed spinal cord, little is known about the mechanisms involved. In particular, the neuroinflammatory processes that are thought to underlie the condition are poorly understood. The present study assessed the localized prevalence of activated M1 and M2 microglia/macrophages in twy/twy mice that develop spontaneous cervical spinal cord compression, as a model of human disease. METHODS Inflammatory cells and cytokines were assessed in compressed lesions of the spinal cords in 12-, 18- and 24-weeks old twy/twy mice by immunohistochemical, immunoblot and flow cytometric analysis. Computed tomography and standard histology confirmed a progressive spinal cord compression through the spontaneously development of an impinging calcified mass. RESULTS The prevalence of CD11b-positive cells, in the compressed spinal cord increased over time with a concurrent decrease in neurons. The CD11b-positive cell population was initially formed of arginase-1- and CD206-positive M2 microglia/macrophages, which later shifted towards iNOS- and CD16/32-positive M1 microglia/macrophages. There was a transient increase in levels of T helper 2 (Th2) cytokines at 18 weeks, whereas levels of Th1 cytokines as well as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and macrophage antigen (Mac)-2 progressively increased. CONCLUSIONS Spinal cord compression was associated with a temporal M2 microglia/macrophage response, which may act as a possible repair or neuroprotective mechanism. However, the persistence of the neural insult also associated with persistent expression of Th1 cytokines and increased prevalence of activated M1 microglia/macrophages, which may lead to neuronal loss and demyelination despite the presence of neurotrophic factors. This understanding of the aetiopathology of chronic spinal cord compression is of importance in the development of new treatment targets in human disease.
منابع مشابه
Human neuropathological and animal model evidence supporting a role for Fas-mediated apoptosis and inflammation in cervical spondylotic myelopathy.
Although cervical spondylotic myelopathy is a common cause of chronic spinal cord dysfunction in humans, little is known about the molecular mechanisms underlying the progressive neural degeneration characterized by this condition. Based on animal models of cervical spondylotic myelopathy and traumatic spinal cord injury, we hypothesized that Fas-mediated apoptosis and inflammation may play an ...
متن کاملGerminal matrix haemorrhage: destroying the brain's building blocks.
Inhibition of Fas-mediated apoptosis through administration of soluble Fas receptor improves functional outcome and reduces posttraumatic axonal degeneration after acute spinal cord injury. ProNGF induces p75-mediated death of oligodendrocytes following spinal cord injury. and delayed degeneration after spinal cord injury in rats and monkeys. Neutralization of CD95 ligand promotes regeneration ...
متن کاملChronological response of prostacyclin changes to moderately low doses of radiation in Rat cervical spinal cord
Background: Study of vascular and its secretory profile changes is an important issue in pathogenesis of radiation myelopathy. This paper reports the prostacyclin concentration changes after low-moderate doses of X-irradiation within a short period of time. Materials and Methods: Cervical cords of Wistar rats were irradiated to doses of 0.5, 1, 2, 4 and 6 Gy X-rays. After 24 hours, 2 and 13 ...
متن کاملTight squeeze, slow burn: inflammation and the aetiology of cervical myelopathy.
A great deal of progress has been made over the past decade in understanding the role of secondary injury in the progression of brain and spinal cord injury, and the innate immune response has emerged as an important potential therapeutic target (e.g. Beattie, 2004; Donnelly and Popovich, 2008). The microglial response to CNS damage and subsequent invasion of the lesion by peripheral macrophage...
متن کاملPOST-TRAUMATIC CHRONIC SPINAL CORD INJURY: ASSESSMENT WITH MRI
The initial experience concerning the use of magnetic resonance imaging in 94 patients who had sustained chronic cord injury showed its specific advantages over traditional imaging modalities. A variety of 84 cord abnormalities were identified including myelomalacia in 47%, cord cysts in 37%, focal atrophy in 11 % and cord transection in 5%. Canal stenosis was seen in twenty-five patients, ...
متن کامل